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Abstract. Models of the atomic and magnetic structures of Fe0.91Zr0.09 metallic glass have been
produced by RMC modelling of neutron diffraction and x-ray diffraction data at temperatures
between 10 and 300 K. The magnetic structure at allT is predominantly ferromagnetic but a weak
peak in the neutron structure factor at 1.2 Å−1 is identified as being due to magnetic ‘defects’. It
is found that the average local density of Fe atoms around these defects tends to be higher than
around ‘normal’ moments. This supports the idea of magnetic frustration in such systems due to
competing ferromagnetic and antiferromagnetic interactions. Assuming that Fe and Zr substitute
isomorphously in Fe1−xZrx glasses, and that Fe moments with more than 12 neighbouring Fe
atoms behave antiferromagnetically, the composition dependence of the magnetic phase diagram
can be explained on the basis of the RMC structural model for Fe0.91Zr0.09 glass.

1. Introduction

One of the main problems in diffraction studies of the magnetic structure of magnetic glasses is
the need to separate the magnetic and nuclear contributions to the scattering. This can be done
using polarized neutrons, but it is difficult and only possible at one or two places in the world. In
a very few cases isotopic substitution can be used. However, even if the contributions have been
separated, it is still necessary to know the three dimensional atomic structure before the effects
of the local structure can be separated from those of magnetic interactions. A possible solution
to both these problems is the use of the reverse Monte Carlo (RMC) modelling technique,
where atomic and magnetic structures are modelled simultaneously. With the RMC modelling
method it is possible to incorporate data from many different experimental methods such as
neutron diffraction, x-ray diffraction and EXAFS.

The RMC method has been previously applied to studies of Dy0.7Ni0.3 based glasses
[1–3] and Dy0.7Fe0.3 [4]. These are optimized systems because the atomic structure has been
determined from isotopic substitution of both Dy and Ni [5], and Dy0.7Fe0.3 is structurally
isomorphous with Dy0.7Ni0.3. In this paper we report the results of the first study where
atomic and magnetic structures have been modelled simultaneously. The Fe0.91Zr0.09 glass
has been chosen for two reasons. Firstly the magnetic behaviour changes considerably with
small composition changes in this region, so the magnetic effects have to be understood in
the framework of an almost invariant atomic structure. Secondly many different structural
measurement techniques can be used on this sample. The absorption edges of both Fe and Zr
occur at suitable energies so that anomalous x-ray scattering could be used, and these energies
are sufficiently separated that the EXAFS spectra do not overlap. The modelling is in fact based
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on data from neutron diffraction (using both pulsed source and reactor-based techniques) and
x-ray diffraction. In addition we have performed a differential anomalous x-ray scattering
measurement at the Zr edge. The anomalous scattering shows that the local Zr environment
is not significantly different from that of Fe (i.e. the total x-ray diffraction pattern is the same
as the differential pattern) but the statistical accuracy is poor and so these data have not been
used for modelling.

A number of models of the magnetic structure of Fe1−xZrx glasses already exist,
though these are based on techniques such as magnetization/susceptibility measurements and
Mössbauer spectroscopy rather than diffraction. They can basically be divided into three
categories:

(a) Ferromagnetic order in thez-direction with spin glass freezing in thex–y-directions (e.g.
[6]).

(b) A ferromagnetic Fe matrix containing antiferromagnetic Fe clusters (e.g. [7]).
(c) A ferromagnetic Fe matrix containing ferromagnetic Fe clusters (e.g. [8]).

The magnetic ordering temperatures,Tc, measured by different authors, tend to be
consistent within a few degrees (e.g.Tc = 218 K for Fe0.91Zr0.09 [9]), suggesting that
differences in models are not due to differences in samples. However one general problem is
that these models are not specific about the length scales over which they are supposed to apply
(e.g. how large is a cluster?), so this produces some difficulty in discussing them in relation
to the models produced here, which are specifically relevant to the short range magnetic order
on a length scale of620 Å.

2. Experimental details

A sample of the amorphous alloy Fe0.91Zr0.09 was prepared by melt spinning. The ribbons were
approximately 1 mm wide and 22µm thick. X-ray measurements were made at Daresbury
Laboratory (UK) using the Synchrotron Radiation Source (SRS). Diffraction studies were done
on Station 9.1, the high precision powder diffractometer, set up in Warren–Mavel mode at the
Ag K edge to suppress Compton scattering. A single strip, without pin-hole defects, was
mounted on an aluminium ring with an inner diameter of 25 mm. As the sample width was
1 mm, a beam size of 0.5 mm× 10 mm and symmetrical transmission geometry was used.
The experiment was carried out at room temperature and the data were corrected using the free
atom form factor for Fe2+.

For neutron diffraction the sample was packed tightly and sealed inside a standard
vanadium container. A time-of-flight neutron diffraction experiment was carried out using
the Liquids and Amorphous Materials Diffractometer (LAD) at the neutron spallation source,
ISIS, at the Rutherford–Appleton Laboratory (UK). The sample was placed inside a cryostat
and measured at 10, 100, 200 and 300 K. The data extend fromQ = 0.3 to 49.2 Å−1; for
Q > 20 Å−1 the structure factor is essentially flat, which shows that the sample is completely
amorphous. In order to confirm the existence of a weak peak at lowQ (see below), which
happened to occur at a ‘join’ between data from two LAD detector banks, a second neutron
diffraction experiment was carried out on the same sample using the Studsvik Liquids and
Amorphous Materials Diffractometer (SLAD) at the R2 reactor, Studsvik Neutron Research
Laboratory (Sweden). Data were collected at 10, 150, 200, 250 and 300 K. The data from LAD
and SLAD are in good agreement. Corrected total structure factors are shown in figure 1. The
structure factor forQ > 0.7 Å−1 is essentially invariant in this temperature range; there is only
a small change at the main peak. The weak peak at 1.2 Å−1 was reproduced in both LAD and
SLAD data, but there was no evidence of such a feature in the x-ray data. This feature must
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therefore be magnetic in origin. More recent measurements [10] above ambient temperature
indicate that the lowQ scattering decreases rapidly, but the 1.2 Å−1 peak is almost unchanged
until the sample crystallizes at about 600 K.
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Figure 1. Total structure factors for Fe0.91Zr0.09 measured by neutron diffraction. Top: LAD data
at 10 (solid curve), 100 (dash), 200 (dot) and 300 K (dash–dot). Centre: SLAD data at 10 (solid
curve), 150 (dash), 200 (dot), 250 (dash–dot) and 300 K (dash–dot–dot). Bottom: the lowQ region
on an expanded scale.

3. Theoretical formalism

For coherent x-ray scattering the total structure factor is given by

Fx(Q) =
n∑
α=1

n∑
β=1

cαcβfα(Q)fβ(Q)[Aαβ(Q)− 1] (1)

whereAαβ(Q)are the partial structure factors,n is the number of species,cα is the concentration
of speciesα and fα(Q) is the atomic form factor for speciesα. In the non-relativistic
approximation the atomic form factor is

fα(Q) =
∫
ψ∗f (r) eiQrψi(r) d3r. (2)

ψ is the total wave function of the atom and the subscriptsi andf refer to the initial and final
states respectively. For coherent scattering these states are the same.

Using the assumption that the nuclear and magnetic contributions to the scattering of
neutrons are additive for a disordered magnetic system with one magnetic component, the
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total (coherent) structure factorI (Q) is given by

I (Q) = F(Q) +
n∑
α=1

cαb
2
α + IM(Q) (3)

wherebα is the coherent scattering length for atomic speciesα, and

F(Q) =
n∑
α=1

n∑
β=1

cαcβbαbβ [Aαβ(Q)− 1]. (4)

The magnetic structure factor is defined using the formalism of Blech and Averbach [11],

IM(Q) =
(

dσ

d�

)
p

+

(
e2γ

2mec2

)2

cMf
2
M(Q)

×
∫ [

A(r)
sin(Qr)

Qr
+B(r)

(
sin(Qr)

(Qr)3
− cos(Qr)

(Qr)2

)]
dr (5)

where the paramagnetic scattering is(
dσ

d�

)
P

= 2

3
cM +

[
e2γ

2mec2
µfM(Q)

]2

. (6)

cM is the concentration of the magnetic species,(e2γ /mec
2)2 = 0.29× 10−24 cm2, µ is the

magnitude of the magnetic moment (inµB) andfM(Q) is the magnetic form factor for neutrons
[12].

A(r) = 4πr2gMM(r)〈µ⊥(0) · µ⊥(r)〉 (7)

and

B(r) = 4πr2gMM(r)[2〈µ‖(0) · µ‖(r)〉 − 〈µ⊥(0) · µ⊥(r)〉] (8)

wheregMM(r) is the partial radial distribution function for the magnetic atom.〈µ‖ ·µ‖〉r and
〈µ⊥ · µ⊥〉r are the correlations of the components of the moment parallel and perpendicular
to the vector joining two moments at0 andr, known as the radial and tangential correlations
respectively.

In the RMC model the moment–moment correlation function〈µ · µ〉r at distancer is
defined as

〈µ · µ〉r = nµ(r)

4πr2dr ρcM
−

R∑
0

nµ(r)/
4
3πR

3ρcM (9)

wherenµ(r) is the sum ofµ(0) · µ(r) for atoms at a distance betweenr andr + dr from a
central magnetic atom, averaged over all magnetic atoms as centres.R is half the length of
the (cubic) configuration box andρ is the number density of ions. The spin-spin correlation
function 〈µ · µ〉r has a similar form to the familiar atomic radial distribution functiong(r),
but unlike the atomic case it is not in general possible to obtain it by direct Fourier transform
of the magnetic structure factor. Except for the limiting cases of complete spin disorder
(paramagnetism) when the second term ofIM(Q) is zero, or complete ferromagnetic order,
whenB(r) goes to zero, computer modelling is required to determine the magnetic structure.

4. RMC modelling

In this study we have used x-ray data to provide information on the atomic structure, while the
neutron data provide information on both atomic and magnetic structures. Initially difficulties



Magnetic structure of Fe0.91Zr0.09 metallic glass 9253

were experienced with obtaining consistency between all of the data sets within a single
structural model. Some problems were overcome by development of the program RMCSPIN
to enable simultaneous modelling of both atomic and magnetic structures, which indicated
a need to renormalize the x-ray diffraction data. It was found that a moment of 2.2 µB
was most consistent with the neutron data; this is the same value as predicted theoretically
[13, 15]. Lorenz and Hafner [14] have also (theoretically) identified a small moment on the Zr
atom. However this moment is too small to make any significant contribution to the scattering,
particularly given the low Zr content, and hence would make no sense to include within the
RMC model.

The RMC models consisted of 5000 atoms in a cubic box of side 41.5 Å, with periodic
boundary conditions. This should allow for correlations up to approximately 20 Å, making
calculation of scattering intensities possible to the lowest values ofQ measured (0.3 Å−1).
The maximum moment correlation length calculated from small-angle scattering results has
been found to be 27 Å atTc [16]. In order to investigate magnetic correlations of this length it
would be necessary to use models with an order of magnitude more atoms. This would be very
time consuming and expensive, so we decided to use this smaller model, although there are
some minor problems with truncation effects. Magnetic moment configurations were created
by placing a moment vector at each Fe location in the atomic configuration. Both fully ordered
and completely disordered moment configurations have been used as starting points to confirm
that the final magnetic structure was independent of the initial magnetic structure.

As there is not yet a version of the magnetic modelling programme, RMCSPIN, which can
also deal simultaneously with neutron, x-ray and EXAFS data, we have had to use an iterative
procedure. The first step was to fit the neutron data. Using standard RMC criteria [1, 16] for
accepting or rejecting atomic moves and magnetic moment rotations, the configurations are
updated until suitable agreement between the experimental and calculated structure factors
is achieved. Upon convergence the result is a three dimensional atomic structure and a
three dimensional magnetic moment structure, which together are consistent with the neutron
diffraction data within experimental error. Figure 2 shows the RMC fit to the neutron data at
150 K. As can be seen the weak peak at 1.2 Å−1 is found in the magnetic part of the structure
factor.

Having made an initial separation of the atomic and the magnetic parts of the structure
factor, we have used the atomic structure from the fit to neutron data as a starting point for
an RMC fit to the x-ray data (figure 3). We then returned to the RMCSPIN program and the
SLAD neutron data. Keeping the atomic structure invariant and only allowing for magnetic
moment rotations, all five temperatures were fitted. No constraints were applied to the total
magnetization, which was found to vary from 1.2 µB per Fe atom for 10 K to 0.7 µB for
300 K. This is in quite good agreement with other results (experimentally determined to be
1.54 µB at 4.2 K [17] and theoretically to be 1.4 µB [13]), considering that RMC always
tends to produce the most disordered structure that fits the data. The RMC fits to the data
are not perfect, and it seems that the oscillations in the fitted magnetic structure factor are too
damped compared to those in the data. We believe that this is due to the limited size of the
configuration; we have not been able to obtain a better fit to the data with any other parameters.
It should therefore be noted that any correlations found in the RMC models are likely to be
stronger in reality.

Figure 4 shows the moment–moment correlation function. This does not decay to zero at
larger, indicating long range ferromagnetic order. There is a small rise at lowr, indicating
slightly enhanced local ordering forr < 10 Å. The radial and the tangential correlations,
〈µ‖ · µ‖〉r and 〈µ⊥ · µ⊥〉r , differ only by a scale factor (figure 5). This behaviour is very
different from what was found for Dy0.7Ni0.3 and Dy0.7Fe0.3 [1–4]. The Dy compounds were
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Figure 2. Neutron diffraction data (crosses) at 150 K together with the RMC fit (solid curve) which
is the sum of the atomic (dotted line) and magnetic (dashed line) contributions. The inset shows
the magnetic structure factor divided by the paramagnetic form factor.
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Figure 3. The x-ray diffraction data (solid curve) and the RMC fit (dashed line).

all very anisotropic with detailed tangential correlations, oscillating between ferromagnetic
and antiferromagnetic interactions, and almost vanishing radial components. The Fe0.91Zr0.09

result then shows that the anisotropy in the Dy compounds was not an artefact of the RMCSPIN
modelling procedure.

To analyse the local magnetic ordering, we have calculated the angular correlation between
the individual moments and the net magnetization direction,Pµ(cosθ). This is shown in
figure 6. We can see that there is a peak at cosθ = 1 (moments parallel to the magnetization
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Figure 4. Moment–moment correlation function for Fe0.91Zr0.09 at 10 (solid curve), 150 (dash),
200 (dot) and 250 K (dash–dot).
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Figure 5. Tangential (left) and radial (right) moment–moment correlation functions for Fe0.91Zr0.09
at 10 (solid curve) and 250 K (dash).

direction), indicating generally ferromagnetic coupling with a strength that increases with
decreasing temperature, but there are still a number of moments pointing in the opposite
direction. In figure 7, the average angle between near neighbour moments, and the average
angle between individual moments and the net magnetization direction, are shown as a function
of temperature. These extrapolate to∼65 and∼53◦ respectively at 0 K. If we assume that
µ2 = 4S(S + 1) µ2

B then for a moment of 2.2µB the latter value is close to the expected value
of cos−1(S/(S(S + 1))1/2) = 50◦.
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Figure 6. Angular correlation between moments and the net magnetization direction at 10 (solid
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Figure 7. The average angle between near neighbour moments (squares) and the average angle
between moments and the net magnetization direction (circles) as a function of temperature.

The average angles at 300 K are lower than those at 250 K, which goes against the trend of
increasing angle asT increases (this holds for both LAD and SLAD measurements). We cannot
be sure that this is not an artefact caused because the 300 K data were measured separately
from the lower temperature data. However it is interesting to note that the most rapid change
in average angle occurs at about 225 K, close to the transition temperatureTc = 218 K as
identified by e.g. susceptibility measurements [9]. This behaviour is similar to that observed
in amorphous Dy0.7Fe0.3 [4].

The small peak atQ = 1.2 Å−1 might possibly indicate local antiferromagnetic
correlations as it is situated at roughly half theQ value of the main peak. To test this idea
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we have separated the moments into two categories, parallel (having cosθ > 0 in figure 6) or
antiparallel (cosθ < 0) to the average magnetization direction. Figure 8 shows a section from
the moment configuration. There are clearly some regions where there are no antiparallel Fe
moments, and it can also be seen that near neighbour moments, both parallel and antiparallel,
tend to be aligned. In figure 9 we show the partial radial distribution functions,gFeFe(r),
for the Fe atoms with different types of moment. The subscriptsp anda refer to parallel
and antiparallel moments respectively. There is a clear increase in peak height forgaa(r),
which means that there is a tendency for the antiparallel moments to be located closer to
other antiparallel moments than if they were randomly distributed. This was also verified by
calculation of partial atomic structure factors for the different Fe types;Aaa(Q) peaks at low
Q, which is an indication of clustering of antiparallel atoms. The partial magnetic structure
factors for the different types of moment at 10 K are shown in figure 10. Although there are
some oscillations, due to truncation, it can easily be seen that the peak at 3 Å−1 is a result of
ferromagnetic interaction between moments parallel to the magnetization direction; the main
contributor isIMpp

(Q). The 1.2 Å−1 peak is a combination of a peak inIMaa
(Q) and a dip

in IMpa
(Q). This means that it originates predominantly from some interaction involving the

antiparallel moments.

Figure 8. A 10 Å thick section from the moment configuration at 10 K. Antiparallel moments are
shown in bold.

5. Discussion

From figure 6 it is obvious that the local ordering in Fe0.91Zr0.09 is ferromagnetic at all the
temperatures measured. The local magnetic order appears to increase most rapidly atTc (e.g.
figure 7) but this is only a weak effect. However, asI (Q) varies most at lowestQ we do not
expect a local ordering transition, but rather a ‘domain ordering’ transition on length scales
above 20 Å, i.e. outside the range of the models produced here. In addition it should be noted
that our models are static ‘snap-shots’ of a structure that is in fact dynamic and hence any ‘spin
freezing’ may only be reflected very weakly in them.

Polarized neutron studies of Fe1−xBx and similar glasses [18, 19] have proposed a model
in which the magnetic structure consists of spins which are ‘canted’ with respect to the
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Figure 9. Partial radial distribution functions,gFeFe(r), for Fe atoms with different types of
moment (as defined in the text) at 10 K. All atoms (solid curve), parallel–parallel (dash), parallel–
antiparallel (dot) and antiparallel–antiparallel (dash–dot).
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Figure 10. Partial magnetic structure factors for different types of Fe moment at 10 K, divided
by the paramagnetic form factor. All moments (solid curve), parallel–parallel (dash), antiparallel–
antiparallel (dot) and parallel-pantiparallel (dash–dot). The p–p and a–a structure factors are scaled
by 1.155 and 8.4 respectively to give them the same highQ limit as the structure factor for all
moments.

magnetization axis, thus explaining that the net moment is lower than the sum of the individual
moments. A random distribution of azimuthal angles is assumed. This would mean that the
angle distribution in figure 6 consisted of a sharp peak at the average canting angle, while the
angular correlation between near neighbour moments would be a broad peak between 0◦ and
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twice the average canting angle. A canting angle of 30◦ was found for Fe0.83B0.17. A recent
theoretical study shows canting angles between 0 and 85◦ for Fe0.8B0.2 depending on exchange
interaction and density [20]. Our results are consistent with the same order of average angle
with the average magnetization direction,∼60◦, but as can be seen from figure 6 this angle in
itself has no physical significance. The peak is at 0◦. It may therefore be considered that, at
least in terms of the models shown here, the canting angle would be a measure of the deviation
of the moments from perfect ferromagnetic alignment, rather than a measure of a preferred
deviation, i.e. the term ‘canting’ would be misleading. However it should be noted that there
is a characteristic difference in the measured structure factor of Fe1−xBx glasses, in that they
show no lowQ rise within the range measured here and no lowQ peak (e.g. similar to that
at 1.2 Å−1 for Fe0.91Zr0.09). The canting explanation may therefore be relevant in those cases
but not in this.
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Figure 11. Coordination number distributions,NFeFe, for nearest neighbour Fe atoms within 3.5 Å.
The vertical line indicates the boundary between atoms whose interactions areFM or AFM, as
defined in the text.

As already indicated in the introduction, it is difficult to compare the models here with
other published models for Fe1−xZrx glasses, since ours are quantitative models on an atomic
length scale whereas the others tend to be ‘descriptive’ models with unspecified length
scales. However we can make some useful comments. Kaul [8] has put forward the idea
of ferromagnetic clusters in a ferromagnetic matrix. Generally the idea is that the clusters are
rather larger (200 Å) than our models and hence cannot really be compared. However they
have suggested that the clusters may be due to the existence of low density regions in the glass,
possibly produced during the fabrication process. If this was the case then one would expect
some variation in properties between different samples produced by different groups, but in
fact the results are remarkably consistent.
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In another class of models (e.g. [7]) it is supposed that there are local density fluctuations
due to chemical segregation of Zr. Our diffraction data are consistent with a random distribution
of Zr, but the scattering contrast between Fe and Zr is not sufficient to rule out some degree
of clustering. However the fact that Fe1−xZrx glasses can be produced over a very wide range
of compositions, and the extremely close values of the atomic radii of Fe and Zr, make it very
unlikely that there is any tendency to segregation.

Our results seem to be most consistent with the model of Ryanet al [6, 17]. In this
(idealized) model the moments are distributed randomly within a cone of half-angleψ ∼ 30◦

(for Fe0.91Zr0.09) relative to the average magnetization direction. This is not inconsistent with
our results, particularly as they note that ‘a small number of spins rotated by more than 90◦ from
thez-axis. . . contribute little toR (Mossbauer intensity)’ and ‘small numbers of antiparallel
spins have been observed in Monte Carlo simulations of frustrated Heisenberg systems’ [6].
We are unable to say anything about the proposal of spin-glass freezing in thex–y direction
at lowerT , since as already noted our models are only static. We simply note that we find
no evidence of any particular ordering (and hence no change) perpendicular to the average
magnetization direction.
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Figure 12. Percentage ofAFM Fe atoms (i.e. those with 13 or more Fe neighbours) as a function
of x in models of Fe1−xZrx glasses (broken curve). The experimentally determined paramagnetic
(PM), ferromagnetic (FM) and spin glass (SG) regions are identified. The percentage of antiparallel
moments in the RMC models for the magnetic structure of Fe0.91Zr0.09 at 10 (square) and 250 K
(circle) are also indicated. The insets show the distributions ofAFM atoms forx = 0.09 andFM
atoms forx = 0.6 and 0.75.

All of the models originate from the idea of magnetic frustration due to competing
interactions, ferromagnetic–antiferromagnetic in two cases and ferromagnetic–ferromagnetic
in one. We have identified regions in the magnetic structure where there are spin ‘defects’ of
some type, though they are too small to say whether they can be considered ferromagnetic or
antiferromagnetic. All of the models identify the origin of the differing types of interaction as
being fluctuations in the local Fe density, as do the theoretical calculations of Lorenz and Hafner
[14]. We can show how such fluctuations arise naturally as a result of structural disorder in
glasses. While the average Fe–Fe near neighbour coordination in Fe0.91Zr0.09 is 10.88 (within
3.5 Å, the distance of the first minimum ingFeFe(r)), the coordination of individual atoms can
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vary between 3 and 17. (The average coordination of Zr around Fe is 1.05, and the distribution
varies between 0 and 6.) We have made the assumption that Fe and Zr substitute isomorphously
in Fe1−xZrx glasses (which is supported by the close values of the atomic radii and the wide
range of compositions over which they can be made) and hence have created a series of
structural models for different compositions purely by random substitution of Fe and Zr in our
model for Fe0.91Zr0.09 glass. We have then assumed (without prior justification) that Fe atoms
with 12 or less Fe neighbours interactferromagnetically(FM) and those with 13 or more
neighbours interactantiferromagnetically(AFM), the italics being used to indicate that these
are purely definitions based on coordination number. The coordination number distributions
are shown in figure 11. Figure 12 then shows the percentage ofAFM atoms as a function of
composition on the basis of these definitions. Forx > 0.75 (25% Fe) all Fe atoms areFM but
do not form a connected network of nearFM neighbours (see figure 12), so there is only short
range magnetic order. The system is therefore paramagnetic. For 0.75> x > 0.25 there are
noAFM atoms, but theFM atoms form a connected network (figure 12) so the system has
long range ferromagnetic order. Belowx = 0.25 the number ofAFM atoms starts to increase,
as shown in the figure; initially there are only isolated atoms, but in the region 0.15> x > 0.05
there will be sufficient to cause some degree of frustration and hence spin-glass-like behaviour.
At x ∼ 0.05 theAFM atoms themselves form a connected network and so here the frustration
would be maximized. These predictions are in remarkably good agreement with the magnetic
phase diagram for these glasses. We find that the predicted number ofAFM atoms from our
structural model for Fe0.91Zr0.09 is in reasonable agreement with the number obtained from
the antiparallel moments in the RMC magnetic structure (there are two values for the latter
since this changes as a function of temperature). The average Fe–Fe coordination number
for antiparallel moments in the RMC model for Fe0.91Zr0.09 is ∼13, while that for parallel
moments is∼10, i.e. the spin ‘defects’ are indeed associated with regions of higher local Fe
density. This also agrees with our initial empirical choice of a coordination number of 12 for
the division between different types of interaction.

One more comment should be made. Forx close to 0.25 theAFM atoms are isolated
but asx decreases they will, even if randomly distributed, start to form some form of larger
clusters (figure 12). Atx ∼ 0.05 they form a connected network (percolation transition). The
correlation length for antiferromagnetic correlations will therefore vary rapidly as a function of
x in this region—indeed the structure is likely to be fractal and hence there will be a wide range
of correlation lengths. It is therefore perfectly possible that different techniques, which probe
the magnetic correlations on different length scales, will indeed find evidence for ‘clusters’ of
different sizes. As we have indicated, these ‘clusters’ arise naturally as a result of the local
atomic density fluctuations within such an amorphous material.

6. Conclusions

RMC modelling of the atomic and magnetic structures of Fe0.91Zr0.09 glass has led to the
identification of magnetic ‘defects’, i.e. a small number of moments that point in the opposite
direction to the net magnetization. We have proposed these may be caused by local fluctuations
in the density of Fe atoms, which are a normal feature of metallic glasses. This proposal is
supported by the observation that the magnetic ‘defects’ have on average a relatively high
coordination. Using the RMC structural model for Fe0.91Zr0.09 we have then produced models
for different glass compositions which enable us to explain the composition dependence of the
magnetic phase diagram. This should be tested by further experiments on samples of Fe1−xZrx
with different values ofx.
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